Noncentrosymmetric compensated half-metal hosting pure spin Weyl nodes, triple nodal points, nodal loops, and nexus fermions
نویسندگان
چکیده
منابع مشابه
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, base...
متن کاملLeft-right asymmetry: nodal points.
The striking left-right asymmetry of visceral organs is known to depend on left- and right-side-specific cascades of gene expression during early embryogenesis. Now, developmental biologists are characterizing the earliest steps in asymmetry determination that dictate the sidedness of asymmetric gene expression. The proteins and structures involved control fascinating physiological processes, s...
متن کاملStructure of fermion nodes and nodal cells.
We study nodes of fermionic ground state wave functions. For two dimensions and higher we prove that spin-polarized, noninteracting fermions in a harmonic well have two nodal cells for arbitrary system size. The result extends to noninteracting or mean-field models in other geometries and to Hartree-Fock atomic states. Spin-unpolarized noninteracting states have multiple nodal cells; however, i...
متن کاملFlux Periodicities in Loops of Nodal Superconductors
Supercurrents in superconducting flux threaded loops are expected to oscillate with the magnetic flux with a period of hc/2e. This is indeed true for s-wave superconductors larger than the coherence length ξ0. Here we show that for superconductors with gap nodes, there is no such strict condition for the supercurrent to be hc/2e rather than hc/e periodic. For nodal superconductors, the flux ind...
متن کاملWeyl and nodal ring magnons in three-dimensional honeycomb lattices
We study the topological properties of magnon excitations in a wide class of three dimensional (3D) honeycomb lattices with ferromagnetic ground states. It is found that they host nodal ring magnon excitations. These rings locate on the same plane in the momentum space. The rings can be gapped by Dzyaloshinskii-Moriya (DM) interactions to form two Weyl points with opposite charges. We explicitl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Materials
سال: 2019
ISSN: 2475-9953
DOI: 10.1103/physrevmaterials.3.021201